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Abstract – The simulation of the propagation of 
electrical activity in a realistic-geometry computer 
model of the ventricles of the human heart using the 
governing reaction-diffusion equation is described.  
Each model point is represented by the phase 1 Luo-
Rudy membrane model, appropriately modified to 
represent human action potentials.  A separate 
longer-duration action potential waveform was used 
for the M cells found in the ventricular mid-wall.  
Cardiac fiber rotation across the ventricular wall 
was implemented via an analytic equation, resulting 
in a spatially-varying anisotropic conductivity tensor 
and consequently anisotropic propagation.  Since the 
model comprises approximately 12 million points, 
parallel processing was used to cut down on 
simulation time.   The model generated acceptably-
normal electrocardiograms, vectorcardiograms and 
body surface potential maps on the surface of a 
numerical human torso model.  Interestingly, it was 
found that the intrinsic difference in action potential 
duration between M cells and other myocardial cells 
was greatly diminished due to electrotonic coupling.  
Keywords – Heart model, reaction-diffusion 
equation, parallel processing, anisotropy, M cell, 
electrocardiogram 
 

I. INTRODUCTION 

Computer models have long been used for the 
simulation of electrical activity in the heart. Many of 
these propagation models were of the cellular 
automaton type, simulating the electrical activity of the 
model cells with a ruled-based algorithm, e.g. Lorange 
and Gulrajani [1].  An exception was the model of Leon 
and Horáček [2] that used subthreshold electrotonic 
conduction to bring the cells to threshold, with 
subsequent action potential generation and refractory 
period determination being ruled-based.  Only 
Huiskamp [3] recently described a ventricular heart 
model in which both subthreshold and suprathreshold 
activity were determined by modified Beuler-Reuter 
membrane equations [4].  We present here a similar 
heart model in which each model cell is represented by 
a modified version of the more accurate phase 1 Luo-
Rudy [5] membrane equation.  Since the spatial 
resolution is greater than that of Huiskamp’s model 
(0.25 mm as opposed to 0.6 mm), simulations with the 
much larger number of points (approximately 12 million 
as opposed to 800,000 in Huiskamp’s model) 

necessitated parallel processing on a multiprocessor 
computer.  

II. METHODOLOGY 

The resolution of the problem was done in two 
steps: the propagation of the electrical activity in the 
heart was simulated first, then the determined 
transmembrane potentials were used to calculate the 
torso surface potentials. 

A. Simulation of Propagation 

The propagation of electrical activity was simulated 
in the ventricles of the human heart model developed by 
Lorange and Gulrajani [1]. The ventricular myocardium 
can be represented by two continuous domains, 
intracellular and interstitial, characterized by the 
equations, 
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respectively. Here �i and �e are the intracellular and 
interstitial potentials, respectively, iG  and eG  the 
intracellular and interstitial conductivity tensors, � the 
surface to volume ratio of the cardiac cells, Istim the 
intracellular stimulation current, and Im the 
transmembrane current coupling the two domains. Im 
passes from the intracellular to the interstitial space and 
is the sum of the ionic and capacitive currents: 
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where Cm is the specific membrane capacitance (Cm = 1 
�F/cm2) and Vm is the transmembrane potential (Vm = �i 

- �e). The combination of equations (1), (2) and (3) and 
the approximation of equal anisotropy in the 
intracellular and interstitial spaces ( ei GG �� ) results in 
the reaction-diffusion equation: 
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As mentioned, the dynamics of the ionic currents 
were based on the Luo-Rudy [5] membrane model. The 
action potential duration was, however, modified to 
match that of human ventricular cells.  Two different 
action potential durations were used, a longer one for 
the so-called M cells [6] situated in the mid-ventricular 
walls and a shorter one for endocardial and epicardial 
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cells.  These changes were realized by decreasing the 
time constants �d and �f, responsible for the slow inward 
current Isi by a factor of 1.6 for the M cells, and by a 
factor of 2.0 for the endocardial and epicardial cells. 
Furthermore, the potassium conductance GK1, 
responsible for the time-independent potassium current 
IK1, was diminished for the M cells. These changes  
produce a transmural gradient of transmembrane 
potential during repolarization that contributes to the 
upright T waves noted in the normal electrocardiogram 
(ECG).  

The propagation of electrical activity starts at the 
transition points between the Purkinje fibers and the 
myocardium; these points are stimulated at 
predetermined times. The propagation is more rapid 
along the cardiac fibers since myocardial anisotropy is 
included in the model. The fiber orientations are defined 
analytically with a modification of the Beyar and 
Sideman [7] equation. The longitudinal and transverse 
interstitial conductivities along and across fiber 
directions are 2.22 mS/cm and 1.33 mS/cm [8].  
Intracellular conductivities are half these values as � 
was taken as 0.5. 

Finite differences were used to solve equation (4). 
The temporal component was solved with the forward 
Euler method. The method of Victorri et al. [9] and the 
use of table look ups permitted rapid determination of 
the Luo-Rudy ionic currents. The formulation of 
Salaheen and Ng [10] was used for the calculation of the 
anisotropic diffusion current given by the first term on 
the right in equation (4).  A time step of 25 �s was used 
during the action potential upstroke; this was increased 
to 50 �s during the plateau. The crossover from one 
time step to the other occurred when all model points 
terminated their upstrokes.  The value of � was adjusted 
to control the total excitation time. Table I presents the 
parameters used to solve equation (4).  

 
TABLE I 

SIMULATION PARAMETERS 
Parameter Symbol Value 
Stimulus current Istim 200 �A cm-2 
Spatial step �x 250 �m 
Membrane capacitance Cm 1 �F cm-2 
Surface to volume ratio � 333 cm-1 
Equal-anisotropy factor  � 0.5 
Longitudinal interstitial conductivity gel   2.22 mS cm-1 
Transverse interstitial conductivity get 1.33 mS cm-1 
Small time step �t1 25 �s 
Large time step �t2 50 �s 
 

The propagation of electrical activity was simulated 
on a Silicon Graphics Origin 2000 parallel computer 
consisting of 64 R12000 processors operating at 400 
MHz.  Running the simulation on the 8 processors 
accessible to us took 20 hours.  The use of finite 
differences allowed an easy separation of the problem 
into portions that could be handled simultaneously on 
different processors.  Total simulation time depends 

mainly on the time spent to calculate the nodal ionic 
currents, and using the full bank of 64 processors would 
likely cut simulation time by very nearly a factor of 8. 

B. Torso Surface Potentials 

The spatial gradient of the transmembrane potential 
distribution determined from equation (4) was used to 
calculate elemental current dipoles at each model point. 
This assumes the approximation of an isotropic 
myocardium, and results in dipoles that are everywhere 
normal to the excitation wavefront. The elemental 
dipoles were combined into 58 regional dipoles that, in 
conjunction with a human torso model, were then used 
to calculate the torso surface potentials using standard 
integral equation approaches [11]. 

III. RESULTS 

Following initial adjustment, the heart model 
generated an acceptably-normal ECG (Fig. 1).  Also 
verified to be normal were the vectorcardiogram and the 
body surface potential map.  Note the largely upright T 
waves in the ECG of Fig. 1, and as mentioned this was 
realized largely by the presence of the M cells in the 
ventricular walls, with their longer action potential 
durations.  

 
Fig. 1: The simulated normal ECG. Depolarization 
(QRS) and repolarization (T wave) are both shown. 
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Fig. 2: Action potential waveforms for A) endocardial 
or epicardial cells and B) M cells. 
 
 

TABLE II 
ACTION POTENTIAL DURATION ACROSS THE LEFT 

VENTRICULAR WALL 
Endocardial cell M cell Epicardial cell 

274 ms 310 ms 255 ms 
 

Fig. 2 shows the intrinsic action potential durations 
of the M cells as well as those of the endocardial or 
epicardial cells.  There is an intrinsic difference in 
action potential duration of approximately 80 ms.  
During simulation, however, this intrinsic difference 
was greatly diminished by the electrotonic coupling 
introduced between adjacent cells by equation (4).  
Table II gives the action potential durations measured at 
one site across the left ventricular wall during normal 
excitation.  It is seen that the intrinsic difference in 
action potential durations drops from 80 ms to 
approximately 35-55 ms. 
 

IV. DISCUSSION 
 
 We have demonstrated the feasibility of simulating 
normal activation of the ventricles using the reaction-
diffusion equation (4), together with an accurate 
membrane model for the ventricular cells.  The 
simulated ECG of Fig. 1 is close to a normal ECG.  
Even more interesting is the demonstration of the 
reduction in intrinsic action potential durations across 
the ventricular wall due to electrotonic coupling. 
Anyukhovsky et al. [12] noted that the difference in 
action potential durations between M cells and 
endocardial/epicardial cells was greater in vitro than in 
situ, and suggested that this was due to electrotonic 
coupling.  Verification of this electrotonic coupling 
hypothesis is difficult experimentally, but as evidenced 
by the above results, is easy to accomplish via computer 
simulation. 

 In order to cut down on computation time, we used 
the simple criterion of switching from the 25 �s to the 
50 �s time step once the upstroke terminated at all 
model points.  This criterion is easily implemented for 
the simulation of a single normal beat. When simulating 
arrhythmias, however, multiple disparate wavefronts 
from consecutive beats may coexist at any given time 
instant, and a more sophisticated space-time wavefront 
tracking algorithm is needed to determine where and 
when the time step needs to be switched.  One such 
adaptive tracking algorithm was proposed recently by 
Cherry et al. [13], and the incorporation of such an 
algorithm into the model is essential in order to render it 
truly versatile. 
 

V. CONCLUSIONS 
 

The use of the more physiologically-correct 
reaction-diffusion equation (4) and the Luo-Rudy 
membrane model [5], together with two types of action 
potential waveforms, allows for more realistic ECG 
simulations. This kind of large-scale simulation is only 
feasible with parallel processing rather than with 
conventional serial computing. We have demonstrated 
the computation of the normal ECG. The next step is to 
implement a more sophisticated wavefront tracking 
algorithm into the model in order to be able to simulate 
cardiac arrhythmias.  
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